How can the US meet energy demand while keeping emissions down?

> Jack Diamond Joanna Slusarewicz Priya Niezgoda Su Chen Teh

The Popular Solution: Solar and Wind

Short-Term: Of clean energy options, wind and solar will win out.

Renewables Additions to the US Grid Wind Solar Others

Long-Term:

Without energy storage, we can reliably meet **48%** of US demand.

Demand vs. Production over Time

Long-Term: We can reliably meet 100% of US demand with ~600 GWh of storage.

Wind and Solar Outside the US: Sub-Saharan Africa

- Over 600 million people lack access to power
- Over 10,000 GW of solar potential

Key point: It is easier to introduce new technologies than it is to integrate them.

Large-scale wind and solar may work better outside the US.

Short term: wind and solar succeed. But long term...

What do we sacrifice?

Drawbacks of Battery Storage

- Difficult to find projections
- Renewables will have a greater role in the share of total energy production
- Resulting duck curve is still an issue

Battery Storage

- Lead-acid → Nickel-cadmium →
 Nickel metal hydride → lithium-ion
- Energy dense, high power capacity
- "exponential technology"
- Near future projections that capacity will increase
- Current mineral (cobalt) and safety constraints

Lithium-Ion Battery Projections

- Could flatten duck curve, stabilize energy grid
- "the deployment of energy storage increases emissions almost everywhere in the US today" (Hittinger and Azevedo)
 - 1.) energy sources for storage more carbon intensive when discharged
 - 2.) only 40%-90% efficient
 - 3.) Disposal
 - 4.) Outsourcing pollution
- "storage in the US today has CO2 emissions of 104-407 kilograms per MWh of delivered energy"
- Renewables could work, but not prolific

Batteries Increase Emissions

Lesson: never store energy in Kansas. | Hittinger & Azevedo 2017

- Without battery storage or without a large supply of renewable energy, emissions will increase
- Policies that can prevent emissions increase
- Need to consider other ways to reduce carbon emissions

More Immediate Action is Needed

Alternative Energy Solutions

Geothermal

- Baseload energy source
- Potential to be accessible across the country
- Geothermal plants take up less space
- LCOE ranges from 0.05- 0.13 dollars per kWh

Wave and Tidal

- Continuous predictable energy
- Extreme potential
- Still has a long way to go
- LCOE of 0.197 dollars per kWh

Methane Digesters (Large)

- Methane Digesters reduce methane emissions,

create energy in the process

- Could help bring clean power to rural areas
- Typically around 1.2 millions to build

What Does This All Mean?

Project Drawdown

- Started by Paul Hawken and Amanda Joy Ravenhill
- Includes only technologically viable, existing solutions
- Compiled by team of over 200 scholars, scientists, policymakers, business leaders, and activists
- Each solution's carbon impact, total and net cost to society, and total lifetime savings were modeled through 2050

NEW YORK TIMES BESTSELLER

Top 10 Solutions

			TOTAL ATMOSPHERIC		
Rank	Solution	Sector	CO2-EQ REDUCTION (GT)	NET COST (BILLIONS US \$)	SAVINGS (BILLIONS US \$)
1	Refrigerant Management	Materials	89.74	N/A	\$-902.77
2	Wind Turbines (Onshore)	Electricity Generation	84.60	\$1,225.37	\$7,425.00
3	Reduced Food Waste	Food	70.53	N/A	N/A
4	Plant-Rich Diet	Food	66.11	N/A	N/A
5	Tropical Forests	Land Use	61.23	N/A	N/A
6	Educating Girls	Women and Girls	51.48	N/A	N/A
7	Family Planning	Women and Girls	51.48	N/A	N/A
8	Solar Farms	Electricity Generation	36.90	\$-80.60	\$5,023.84
9	Silvopasture	Food	31.19	\$41.59	\$699.37
10	Rooftop Solar	Electricity Generation	24.60	\$453.14	\$3,457.63

References

https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy

https://phys.org/news/2015-04-history-batteries.html

https://www.youtube.com/watch?v=80_DapjoSiA

https://www.vox.com/energy-and-environment/2018/4/27/17283830/batteries-energy-storage-carbon-emissions

https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections

https://www.eia.gov/todayinenergy/detail.php?id=40072

https://www.oxfamamerica.org/static/media/files/oxfam-RAEL-energySSA-pt1.pdf

http://web.stanford.edu/group/efmh/jacobson/Articles/I/USStatesWWS.pdf

https://pubs.rsc.org/en/content/articlelanding/2018/ee/c7ee03029k#!divAbstract

https://www.drawdown.org/about

https://www.drawdown.org/solutions

https://www.eia.gov/outlooks/steo/data.php?type=figures