
Future of Electric Vehicles

Devon Merz, Kasia Kiela, Tony Yan, Michelle Niu

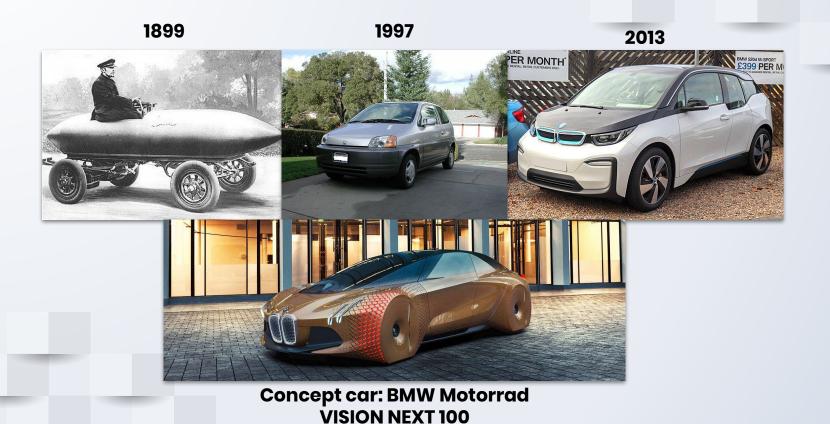
Rapid Growth of EV Sales

A 2017 survey by McKinsey & Co. found that <u>EV sales</u> have been <u>increasing</u> by ~50% per year:

Future of EV Viability

Electric vehicles have the potential to <u>disrupt the</u> <u>transportation industry</u> through <u>3 key areas</u>:

Economic Viability Decreases in EV pricing driven by new tech and subsidies


Social Viability

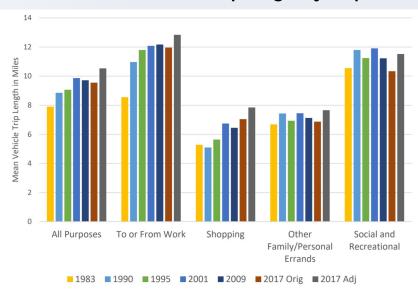
Increasing levels of environmental awareness both on the consumer and governmental scale

Technological Viability

Vast improvements in EV technology

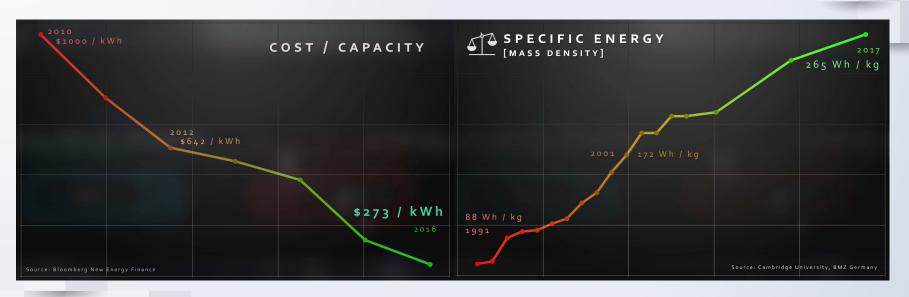
Technological Viability

Technological Viability - Present

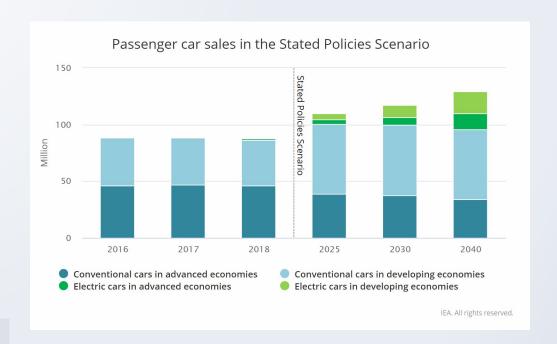

EV technology is well-developed and has many advantages:

		Gas Engine	Electric	Hybrid
1	Low center of gravity for safety and better handling	×	✓	X
2	Light Fuel Source	✓	X	X
3	Existing and Well Developed Fuel Supply Network	✓	✓	✓
4	Regenerative Braking	×	✓	✓

Technological Viability - Battery Usage

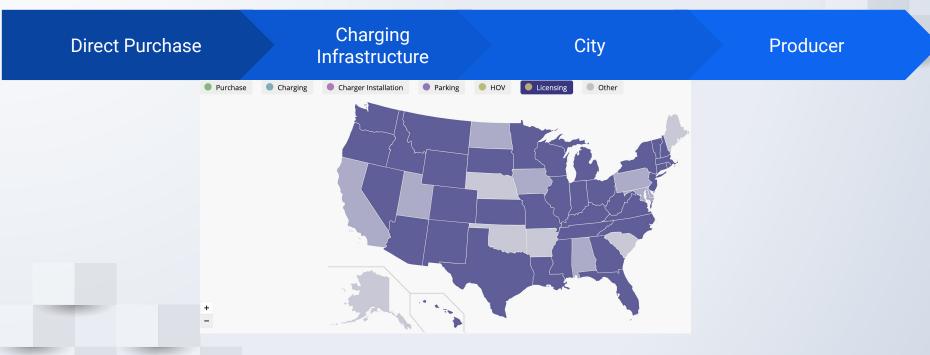

Issue: "EV technology is somewhat limited range"

Trends in Mean Vehicle Trip Length by Purpose



Technological Viability - Battery Technology

Batteries are on a promising trajectory:


Technological Viability - Future Trends

Economic Viability

Economic Viability - Upfront Pricing & Subsidies

Economic Viability -Up

onomic viak	illey –
front Pricing	
Payback Period	

- 5-6 years for an average US buyer driving 13,000 miles/year
- 2-3 years for high-mileage drivers exceeding 30,000 miles/year

Decreasing Battery Costs

- 2015 50% of total cost
- 2019 33% of total cost
- 2025 20% of total cost

Looking Ahead

Each 20-25% improvement in battery cost reduces payback by 1 year

Economic Viability - Ownership Pricing

A 2018 Study from the University of Michigan found that

EVs cost **less than half** as much to operate as

gas-powered vehicle.

Economic Viability - Utilities Incentives

Reduced TOU rates

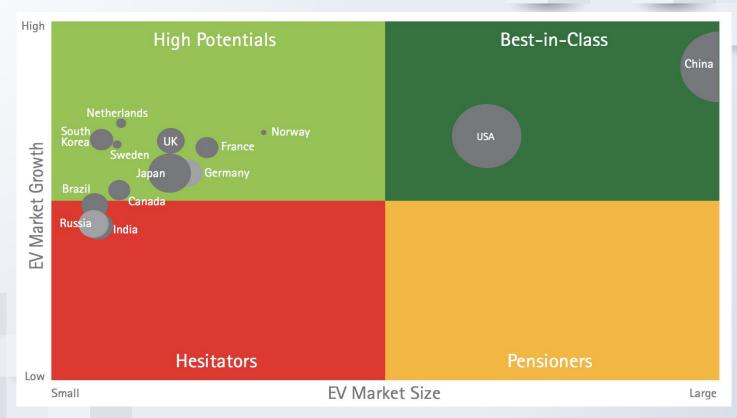
Rates are lower during the times of day or seasons when charging is less common.

Off-peak hour rates for electric vehicles

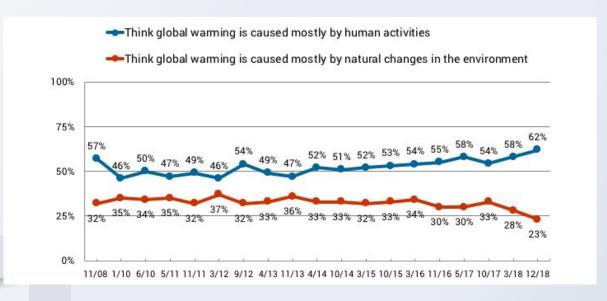
Lower rates for charging of electric cars during off-peak hours.

Per Kilowatt-Hour discounts

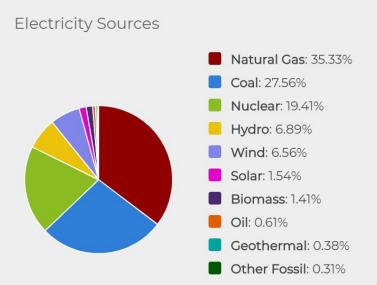
Discount on hours used to charge electric vehicles.

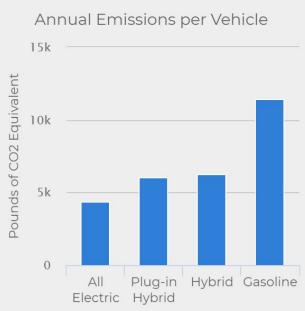

Economic Viability EVs & Solar Panels

ROI 10-30%

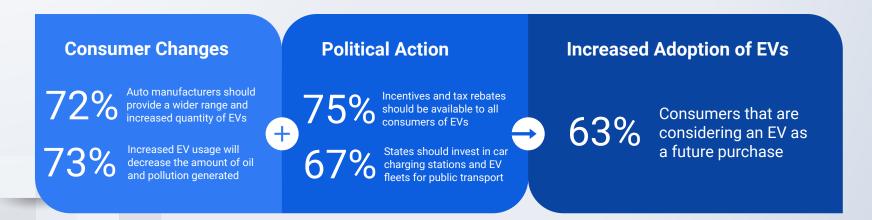

Break-even 7 1/2 years

Economic Viability - Potential Buyers


Social Viability -Environmental Concerns


The percent of Americans that believe in human-driven global warming has increased by 16% over the last 8 years:

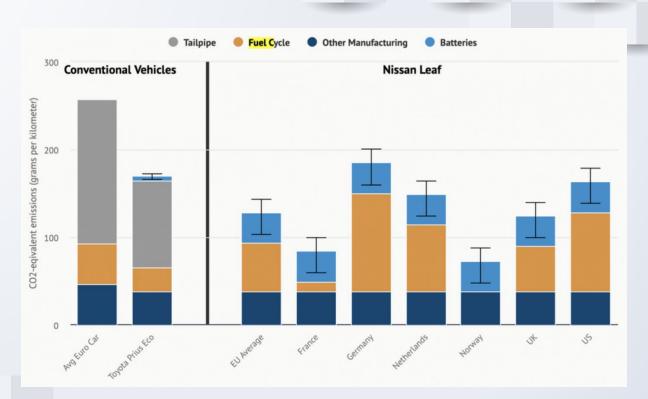
Social Viability -Environmental Benefits


National Averages



Social Viability -Impact on EV Adoption

A 2019 study by Consumer Reports shows that changes in <u>consumer preferences</u> and desire for <u>government intervention</u> are driving adoption of EVs:


Social Viability - EVs in Other Countries

Bibliography

- 1. "The Race For The Electric Car." CB Insights Research, www.cbinsights.com/research/report/electric-car-race/.
- 2. 2017 National Household Travel Survey, https://nhts.ornl.gov/assets/2017 nhts summary travel trends.pdf
- 3. Bloomberg New Energy Finance and Cambridge University, BMZ Germany
- 4. IEA World Energy Outlook, https://www.iea.org/weo2019/fuels/
- 5. THE CURRENT STATE OF ELECTRIC VEHICLE SUBSIDIES: ECONOMIC, ENVIRONMENTAL, AND DISTRIBUTIONAL IMPACTS. strata.org/pdf/2017/ev-full.pdf.
- 6. "Electric Car Incentives Map." EV Compare.io, evcompare.io/incentives/.
- 7. "Making Electric Vehicles Profitable." *McKinsey & Company*, www.mckinsey.com/industries/automotive-and-assembly/our-insights/making-electric-vehicles-profitable.
- 8. Gent, Edd. "Electric Cars Are Estimated to Be Cheaper Than Regular Cars by 2022." Singularity Hub, 2 May 2019, singularityhub.com/2019/04/29/electric-cars-are-estimated-to-be-cheaper-than-regular-cars-by-2022/.
- 9. McMahon, Jeff. "Electric Vehicles Cost Less Than Half As Much To Drive." Forbes, Forbes Magazine, 16 Jan. 2018, https://www.forbes.com/sites/jeffmcmahon/2018/01/14/electric-vehicles-cost-less-than-half-as-much-to-drive/#266431b63f97.
- 10. "Do Electric Cars Save Money?" *EnergySage*, https://www.energysage.com/electric-vehicles/advantages-of-evs/do-electric-cars-save-money/.
- 11. Electric Vehicle Market Attractiveness. www.accenture.com/_acnmedia/pdf-37/accenture-electric-vehicle-market-attractiveness.pdf.
- 12. Revkin, Andrew. "Most Americans Now Worry about Climate Change-and Want to Fix It." Surveys Show Widening Worry on Climate Change-and Willingness to Fix It, 23 Jan. 2019, www.nationalgeographic.com/environment/2019/01/climate-change-awareness-polls-show-rising-concern-for-global-warming/.
- 13. McMahon, Jeff. "Electric Vehicles Cost Less Than Half As Much To Drive." Forbes, Forbes Magazine, 16 Jan. 2018, https://www.forbes.com/sites/jeffmcmahon/2018/01/14/electric-vehicles-cost-less-than-half-as-much-to-drive/#266431b63f97.
- 14. "Do Electric Cars Save Money?" *EnergySage*, https://www.energysage.com/electric-vehicles/advantages-of-evs/do-electric-cars-save-money/.

Questions?

James Ellsmoor, Forbes

https://www.forbes.com/sites/jamesellsmoor/2019/05/20/are-electric-vehicles-really-better-for-the-environment/#5e54470876d2