SOLAR ENERGY AT RICE UNIVERSITY

Anja Hartge Evan Jasica David Pichardo Muriel Taylor-Adair Wesley Wright

December 2021

SL1DESG0..COM

Intro

Our Big Questions

1. Can Rice meet its energy needs through solar energy alone if panels were installed in all viable areas?

2. What other considerations would/would not make this feasible and practical?

Our Approach

- **1.** Mapped out viable area for solar panel installation
- 2. PVwatts Calculator by National Renewable Energy Laboratories (NREL) takes weather/solar radiation data, models solar power generation
- **3.** Compared this output to Rice's use

Mapping Out Potential Solar Energy Zones

- Determined whether spaces were suitable for solar power based on following factors:
 - Sun exposure/levels of solar radiation
 - Level of shade
 - Level of cloud cover
 - Direction of solar panels (preferably south-facing)
 - Obstructions (other buildings, treeline cover, etc.)
- Utilized Google Earth to find suitable zones as well as map specific sizes of each potential area
- Ultimately, decided upon using Rice's lots to create large-scale solar canopies as well as roof space

Solar Panel Areas: Roof Space

Ex: Martel College has ~1,991 m² of roof space Campus Total is **~50,986 m²**

Solar Panel Roofing Areas: Campus Lots

Greenbriar Lot

Space at ~54,000 m².

West Lot 2 + 3

Space of at ~32,000 m².

West Lots I + 4

Space of ~43,000 m².

Total Campus Lot Space: ~129,000 m²

Why Solar Parking Lots ?

- Reduces costs of lighting and operation expenses from other sources on campus
- Helps mitigate substantial peak-hour energy demand created by Rice
- Saves on fuel efficiency for vehicles Reduced need to use air conditioning in hot Houston weather
- Uses significantly less energy than a lot that relies on a power grid
- Provides increased support for electric vehicles

Results

Duck Curve Recap

- Lower demand in the day, with higher production
- Rapid evening demand increase, ramp need

Production vs. Use over I Day

Use Vs. Production over 24 Hours (12/12)

-Right now Rice doesn't face a severe Duck Curve

- We would still need storage or other sources to meet daily needs

Production vs. Use by Month

Total Energy Use vs. Production by Month

-Yellow = Rice's use

- Green = modelled solar production

- Rice would fall far short of its energy needs if only powered by solar

Production vs. Use Over One Year

Energy Use vs. Production Over a Year

-Yellow = Rice's use - Green = modelled solar production

Key Takeaway:

Rice would fall far short of its energy needs if only powered by current solar technology

Perovskite Cell R&D Challenges:

energy.gov

Key Takeaway:

Rice's energy needs require solar panel efficiencies that are unrealistic in the near future

Solar Energy at Rice

ENST 250

Cost

The Costs

- 19.4 MW car lot solar: \$2.40/Watt installed,
- 7.7 MW Rooftop Solar: \$2.00/Watt installed
- Total cost: **\$62,000,000**
 - Not economically practical
- Solar is growing, new tech is being developed: how might we expect cost to change in the future?

Change of Solar Panel Cost Over Time

- Solar PV prices expected to drop by 34% by 2030 (BNEF New Energy Outlook 2019)
- By 2050, prices should drop by approximately **63%**,
- Thus, utility-scale PV will cost approximately 2.5 cents per kWh
- From these projections, we can estimate that the total cost of solar panel implementation to be at least halved by 2050 (~\$31,000,000)

Berkeley Lab

Methods of Storing Energy

Batteries

Flow Batteries are a common way to store energy and have a lot of room for advancement

Cold Water Storage

Cold water storage is a cheaper way to run air conditioning

The Problem

- This is per hour usage so ideally we need to be able to store 12 times this amount of energy
- This assumes 12 hours of daylight, but this is a high estimate for winter hours
- Need to be able to store between 216,000 and 250,000 kW of energy

Types of Batteries

Lithium-ion
Flow Batteries

Lithium Ion Battery Chemistry

Advantages

- Lithium-Ion batteries are a type of dry cell battery
- Most energy dense batteries available on the market (150 watts/ kg)
- Can handle the most charge discharge cycles for dry cell batteries

Disadvantages

- Degrade within 8 years
- Can't be fully discharged or they will be ruined
- Batteries get hot easily and if the membrane that separates the ions gets punctured, the electrolyte can catch fire

Implementing Lithium Ion Batteries

- With 150 watts/kg , need 200 metric tons worth of pure battery storage
- Need to add on computer that monitors the temperature, sensors that monitor voltage, and a voltage tap for each cell
- Must be kept at 59 degrees

Cost of Lithium-Ion Batteries

NREL

Flow Battery Chemistry

Advantages

- Long Lifespan (up to 30 years right now)
- They can be discharged over spans of 10 or more hours

Disadvantages

- Energy less dense
- Naturally require a large surface area for oxidation and reduction to occur

Cost of Flow Batteries

- Cost ends up being higher than Lithium-Ion Batteries with current technology -No large scale industry production for flow batteries
- \$367 kWh based on current technology
- Vanadium costs about 2 cents per kWh but quinone costs ¼ cent per kWh

Cold Water Storage

- Cold Water Storage for a very different problem
- Cold Water can be stored during times of low energy demand
- Used during times of high energy demand
- Dampens the duck curve

Cold Water Storage

- Cold Water Storage (12 kWh/m^3)
- lce (73 kWh/m³)
- PCM Storage (25-70 kWh/m³)

Cold Water Storage Costs

- Ice storage had most available data
- Lifespan of 50 years
- \$203/ kWh

Energy.gov

Conclusions

- Lithium-ion batteries are the most viable right now
- Solar enthusiasts are optimistic about flow-batteries

Maintenance

Solar Panels Require Little Maintenance

- Debris is cleared by rainfall
- Light cleaning 2-4 times a year
- Rice could just expand current cleaning arrangements
- Common Repairs ~\$100 per hour

https://www.solarreviews.com/blog/solar-panel-maintenance-everything-you-need-to-know

Unexpected Damages

Structurally strong, but can be damaged by

weather

- Inverter malfunctions
 - ~\$2,000 to replace a string inverter,

~\$300 to replace a micro inverter

https://www.sunnova.com/watts-up/most-common-solar-maintenance

Unexpected Damages

- Arc faults heat from high electricity discharge breaks down wires
 - Panels have protection against this fault mode
- Wiring damage
 - May need to replace the whole panel
- Replacements
 - Cost varies by location, roof grade, panel type
 - Roof panels cost more to replace/repair than ground panels

https://www.paradisesolarenergy.com/blog/the-cost-and-frequency-of-solar-maintenance

Conclusion

Our Big Questions

1. Can Rice meet its energy needs through solar energy alone if panels were installed in all viable areas?

2. What other considerations would/would not make this feasible and practical?

Key Takeaways

- Rice would fall far short of its energy needs if only powered by solar
- Rice's energy needs require solar panel efficiencies that are unrealistic in the near future
- Other considerations further support the idea that it would be unrealistic to depend on solar alone

Thank You!

Sources

3 Clever New Ways to Store Solar Energy (popularmechanics.com)

How Cheap Can Energy Storage Get? Pretty Darn Cheap - Ramez Naam

Batteries May Not Be Best Option For Small-Scale Storage (energystorageforum.com)

Utility-Scale Battery Storage | Electricity | 2021 | ATB | NREL

How Lithium-ion Batteries Work | HowStuffWorks

Direct contact PCM-water cold storage - ScienceDirect

Keep It Cool with Thermal Energy Storage (nrel.gov)

Final - ESGC Cost Performance Report 12-11-2020.pdf (pnnl.gov)

Trane PowerPoint Template_Gray (energy.gov)

Will Solar Panels get Cheaper?'

Factors that Affect Solar Panel Efficiency

Sources

<u>The Duck Curve: What is it and what does it mean? - Energy Alabama (alcse.org)</u> <u>Richard R. Johnson | Sustainability | Rice University</u> <u>PVWatts Calculator (nrel.gov)</u>