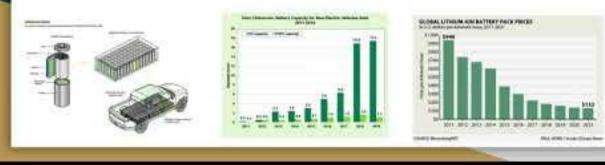


Electric Vehicles

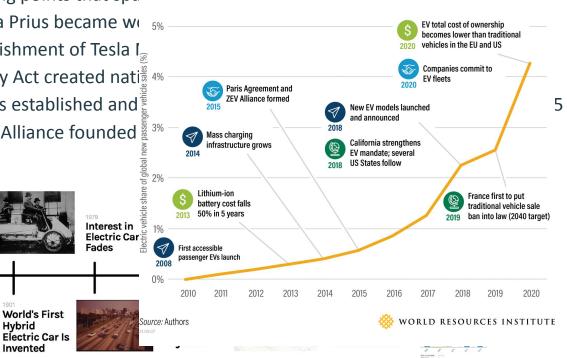
Saumya Jhaveri, Raghav Chugh, Daniel Choi, Art He, Pranav Nagajothi, Kushal Kandel


The History and Composition of EVs

Construction of EVs (Lithium Ion Batte

Type of rechargeable battery that uses the reversible reduction of lithium ions to store energy.

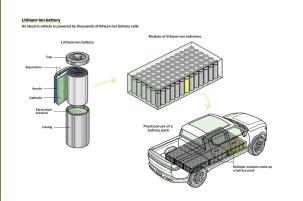
- · Four main components: cathode, anode, electrolyte, and separator
- Three steps to producing batteries: electrode manufacturing, cell assembly, and cell finishing
 - Currently an emissions heavy process; for every 1 tonne of mined lithium, 15 tonnes of CO2 are emitted into the air
- Price of batteries is getting cheaper, and overall capacities are increasing

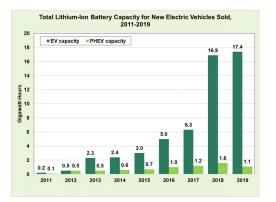

History of EVs

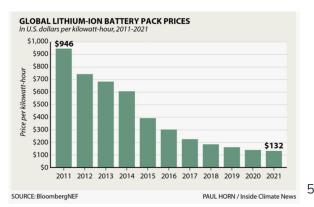
Key Milestones in the Exponential Growth of Electric Vehicle Sales

POLICY MILESTONE

COST MILESTONE

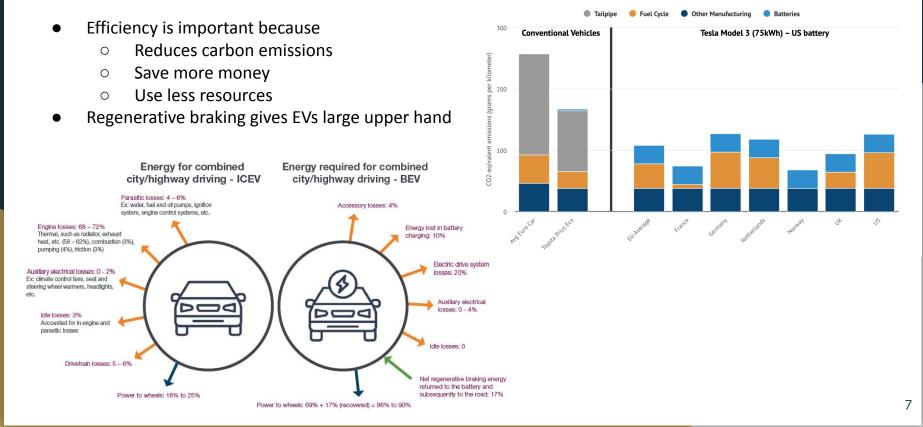

- 1 Two distinct turning points that spa
 - 1. Toyota Prius became w
 - 2. Establishment of Tesla I
- The 2009 Recovery Act created nati
- Paris-Agreement is established and
- European Battery Alliance founded ²³/₂ ^{3%}



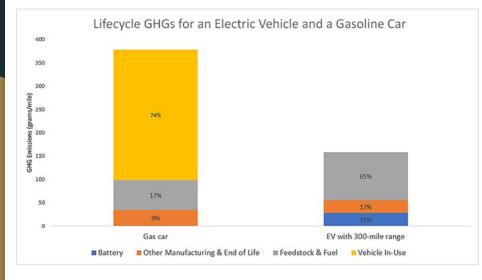

DEPLOYMENT MILESTONE 🥳 KEY CHANGE AGENT MILESTONE

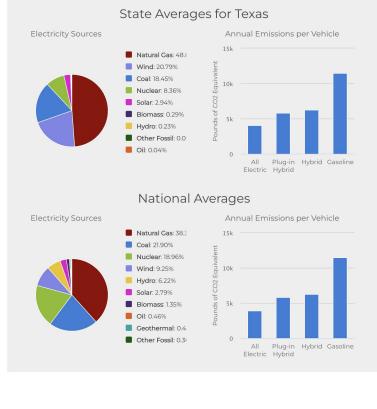
Construction of EVs (Lithium Ion Batteries)

- Type of rechargeable battery that uses the reversible reduction of lithium ions to store energy
- Four main components: cathode, anode, electrolyte, and separator
- Three steps to producing batteries: electrode manufacturing, cell assembly, and cell finishing
 - Currently an emissions heavy process; for every 1 tonne of mined lithium, 15 tonnes of CO2 are emitted into the air
- Price of batteries is getting cheaper, and overall capacities are increasing



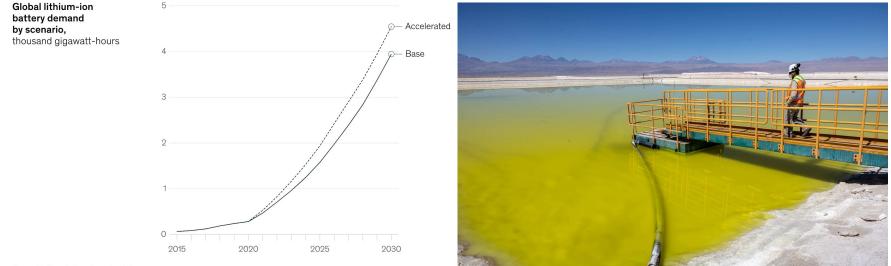
Electric Vehicles vs. Gasoline Powered Cars




EVs vs Internal Combustion Engine Efficiency

Emissions and Sustainability

- EV battery: 15-20 years average life cycle
- ICE engine: 10 years average life cycle
- The emissions for EVs are much lower than traditional cars

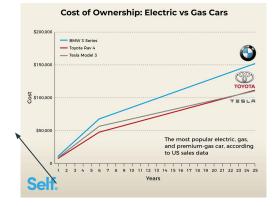


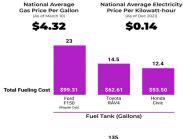
8

Lithium-Ion Batteries: Are they Sustainable?

- The mining process for lithium is intensive and poses risks to the environment
 - Done through a system that uses large amounts of water and toxic chemicals
- With more and more technology being introduced to the world, lithium demand will only increase

Source: McKinsey battery demand model

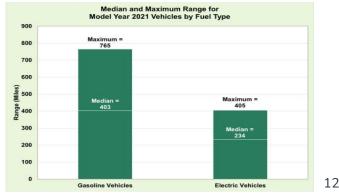



Comparative Costs and Trade-Offs

EV's are expensive

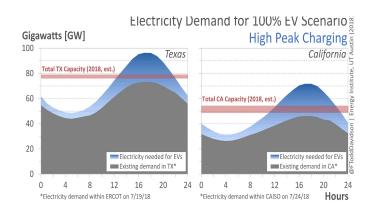
- There is a significant difference between the price of EV's and gasoline cars
 - The average price of an EV is \$55,000 compared to the average price of a gasoline car which is \$30,000
 - However, prices will fall as the cost of manufacturing gets cheaper
- However, EV's are much more cost effective in the long run
 - A 2018 study stated that EV owners are able to break even after 6.7 years of purchasing the car, and start saving money post that
- EV's also have much lower maintenance costs since they are a lot less moving parts.
 - According to AAA, they cost \$330 less per year on maintenance.

Range and Charging Capabilities of EVs

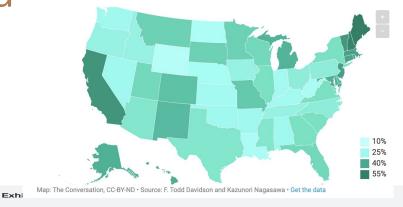

- The average range of EV's is around 200 miles, and the maximum range is 400 miles
 - However, the US and other governments are spending a large amount of money in the field of battery optimisation in an effort to increase the range.
- Another major drawback are the limited charging stations and the lengthy process of charging these vehicles
 - The US has about 55,000 charging stations, with about 136,000 chargers- versus 145,000 petroleum gas stations, with 1.5 million nozzles.
 - A gas station can also handle a number of cars at a time and filling a tank only takes up a few minutes. However, it takes 4-5 hours to fully charge an EV.
- In fact, the most common EV charger, the 240V level 2, takes
 2-3 hours to add only 100 miles of range

Unequal distribution of U.S. EV charging stations

Total number of public electric vehicle charging stations shows sharp discrepancies between states

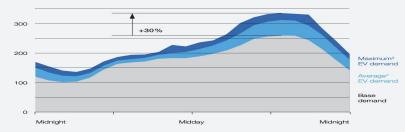


Note: Includes all public EV charging stations of any level regardless of operator Source: U.S. Department of Energy, Alternative Fuels Data Center (Aug 2021)



Impact on the Power Grid

- US mandates to end purchases of gas-powered vehicles by 2035 will require bolstering the power grid
 - Projected growth will vary significantly state-by-state
- The sensible approach would be to strengthen existing renewable energy infrastructure
 - In fact, leading oil and gas companies like BP have started to build and advocate for renewable capacity and infrastructure.
- Many companies are looking to be net zero by the year 2050, but at the same time looking to increase the power output to meet the demand.
 - Not only are we increasing the power output, but also doing it in a sustainable way.



Projected Electricity Consumption and EVs

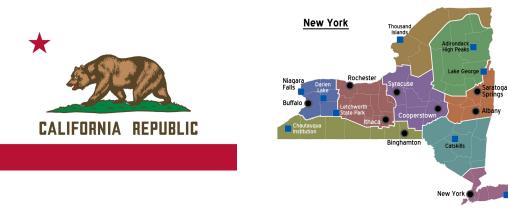
When local electric-vehicle penetration hits 25 percent, peak circuit loads can grow 30 percent.

Feeder circuit load,¹ 150 homes with 2 vehicles per household,² with 25% electric-vehicle (EV) penetration, kilowatts

¹Load shape for a typical feeder with 150 houses at 8 megawatt-hours per year; example shown for Midwestern US on typical September day. ²The average US household owns 2.1 vehicles.

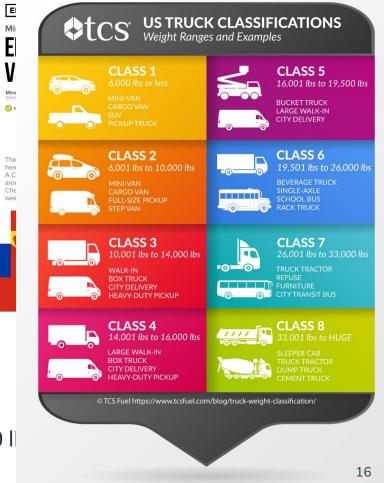
"Statistically expected maximum EV demand—"peak day." "Statistically expected average EV demand—"typical day."

McKinsey&Company | Source: OpenEl; McKinsey analysis



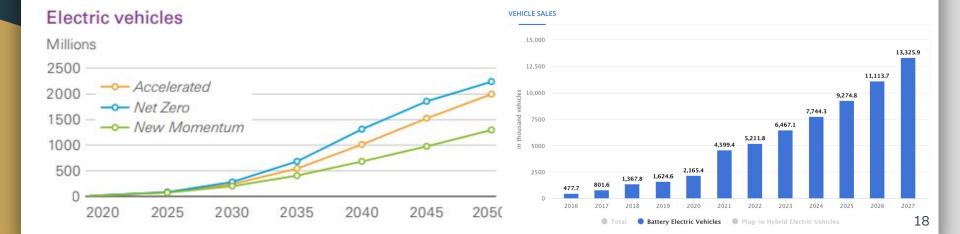
EV Regulation and Policy

Electric Vehicle Mandates

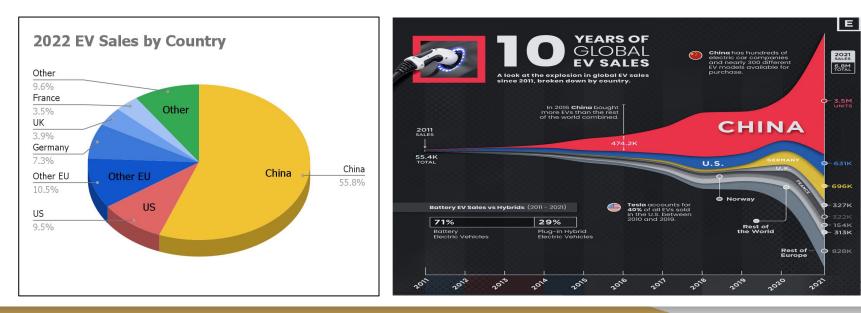

- California & New York
 - 2035 EV or plug-in electric hybrids
- European Union
 - 2035 ban sale of new petrol and diesel cars

Inflation Reduction Act

- Section 30D EV Tax Credit
 - \$3750 critical mineral requirement
 - \$3750 battery component requirement
 - 2024 no more foreign battery components
 - 2025 no more foreign critical minerals
- Section 25E Used EV Tax Credit
 - \$4,000 or 30% of sale price
 - \$25,000 minimum; 2 years old
- Section 45W Commercial EV Tax Credit
 - 30% of sale price or incremental cost
 - (EV price comparable ICEV price)
 - \$7,500 for < 14,000 lbs; \$40,000 for > 14,000 l

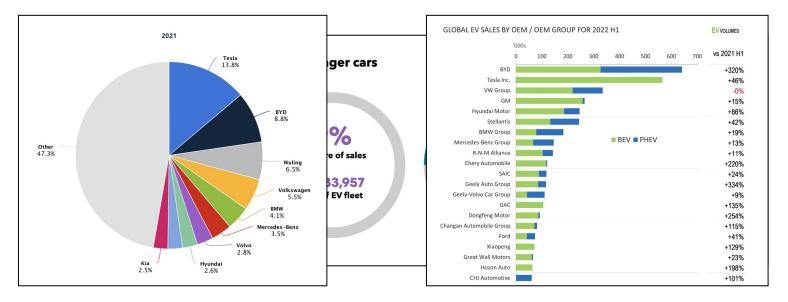


Current EV Market

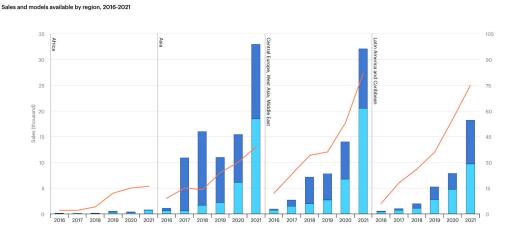

EV Market - Overall

- The EV market is large (\$24.03 billion domestically, \$185 billion globally) and projected to grow rapidly (CAGR: <u>17.75%-25.4%)</u>
- EV sales are **distributed unevenly** across countries, with China as the largest player, followed by Europe and the US.
- No single manufacturer dominates EV manufacturing, and almost all major automakers are expanding their EV presence.

EV Market - By Country

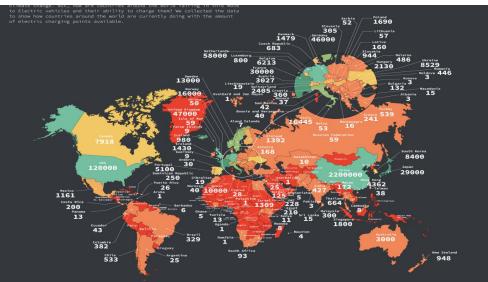

- The EV market is **large** (\$24.03 billion domestically, \$185 billion globally) and projected to **grow rapidly** (CAGR: 17.75%-25.4%)
- EV sales are distributed unevenly across countries, with China as the largest player, followed by Europe and the US.
- No single manufacturer dominates EV manufacturing, and almost all major automakers are expanding into EVs.

9


EV Market - By Maker

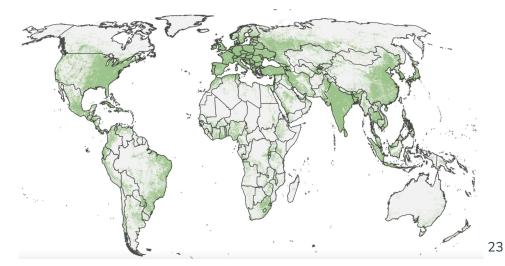
- The EV market is **large** (\$24.03 billion domestically, \$185 billion globally) and projected to **grow rapidly** (CAGR: 17.75%-25.4%)
- EV sales are **distributed unevenly** across countries, with China as the largest player, followed by Europe and the US.
- No single manufacturer dominates EV manufacturing, and almost all major automakers are expanding into EVs.

EV Market Trends


- Companies are diversifying EV options, including expanding types of EV (SUVs, sedans) and electrification options.
 - Europe & China \rightarrow US \rightarrow Latin America & Caribbean \rightarrow Asia \rightarrow Africa 0
- EV **infrastructure is expanding**, which could fuel greater investment and consumer spending.
 - US: \$5 billion IRA investment, electricity grid reliance 0
- Markets and capital flows towards **developing countries** are steadily increasing, but not fast enough.
 - India: 2021 FDI \$6 billion vs \$180 billion estimate 0

EV Market Trends

- Companies are diversifying EV options, including expanding types of EV (SUVs, sedans) and electrification options.
 - $\circ \qquad \mathsf{Europe} \And \mathsf{China} \to \mathsf{US} \to \mathsf{Latin} \ \mathsf{America} \And \mathsf{Caribbean} \to \mathsf{Asia} \to \mathsf{Africa}$
- EV infrastructure is expanding, which could fuel greater investment and consumer spending.
 - US: \$5 billion IRA investment, electricity grid reliance
- Markets and capital flows towards **developing countries** are steadily increasing, but not fast enough.
 - India: 2021 FDI \$6 billion vs \$180 billion estimate



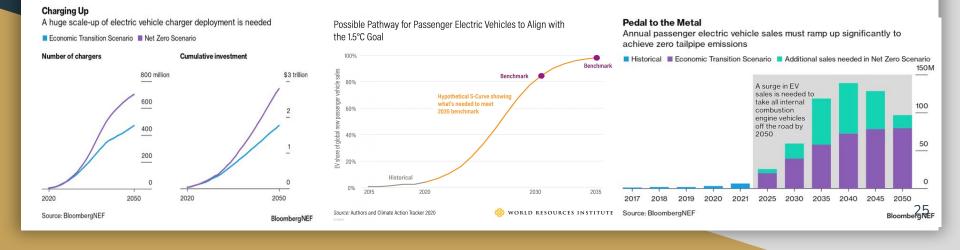
EV Market Trends

- Companies are diversifying EV options, including expanding types of EV (SUVs, sedans) and electrification options.
 - $\circ \qquad \mathsf{Europe} \ \& \ \mathsf{China} \to \ \mathsf{US} \to \mathsf{Latin} \ \mathsf{America} \ \& \ \mathsf{Caribbean} \to \mathsf{Asia} \to \mathsf{Africa}$
- EV infrastructure is expanding, which could fuel greater investment and consumer spending.
 - US: \$5 billion IRA investment, electricity grid reliance
- Markets and capital flows towards developing countries are steadily increasing, but not fast enough.
 - India: 2021 FDI \$6 billion vs \$180 billion estimate

US\$, millions	Vehicle capital investment					Charging infrastructure				Total		
	4W	2W	3W	Bus	Total	4W private	3/4W public	Bus public	Total	Private	Public	Aggregate
Brazil	5,088	213	3	174	5,479	342	1,014	174	1,530	5,646	1,362	7,009
Cambodia	13	15	-	8	36	1	3	4	8	29	15	44
Egypt	799	548	143	320	1,810	105	307	160	571	1,594	787	2,381
Ethiopia	64	21	6	160	252	2	6	73	81	93	240	333
Ghana	24	4	10	92	129	5	14	43	62	42	149	192
India	8,410	6,375	722	2,449	17,956	857	2,525	1,065	4,447	16,364	6,039	22,403
Jamaica	150	3	_	0	153	10	29	0	39	163	30	193
Jordan	219	16	_	7	242	8	25	3	36	243	35	278
Kazakhstan	87	0	-	48	135	26	76	15	116	113	139	251
Maldives	3	6	1	0	10	0	0	0	0	9	1	10
Nepal	134	338	9	185	666	3	9	60	72	485	254	739
Nigeria	(43)	2	-	305	263	13	36	127	175	(29)	467	438
Poland	1,399	5	_	65	1,469	184	543	31	757	1,587	639	2,226
Rwanda	(0)	1	0	12	13	0	1	5	7	1	19	20
Tajikistan	(3)	-	-	1	(2)	1	4	0	5	(1)	5	3
Turkey	1,981	130	-	522	2,633	131	393	245	769	2,242	1,160	3,402
Ukraine	243	7	-	107	357	35	100	46	180	285	252	537
Uruguay	242	59	_	(0)	301	12	35	5	51	313	39	352
Vanuatu	1	0	—	(0)	1	0	0	1	2	1	1	2
Vietnam	863	2,047	374	258	3,542	41	123	111	275	3,325	491	3,817

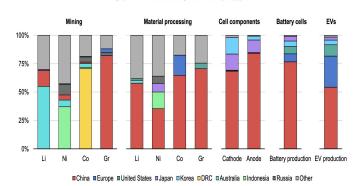
TABLE 2.18. Additional Investment Needs at 2030 of Pursuing the 30x30 Scenario

Source: World Bank, Economics of Electric Mobility Scoping Tool, 2022.



The Future of EVs

Plugging into the Future


- EV charging connectors must scale-up to around **700 million by 2040** in either a net-zero or economic transition scenario
- Nearly 100% of new vehicle sales should be EVs in order to hit 2035 benchmarks to limit global temperatures to 1.5°C
- Massive surge of sales is needed to replace the ICE—over \$10M by 2025; \$60M by 2040; \$70M by 2050

Recommendations: Public and Private

- Jumpstart the **heavy-duty** market
 - Sales of electric buses rose 40%, but remain less than 1% of the total number of registrations for medium-heavy duty vehicles
- Promoting adoption and development in developing and emerging economies
 - Prioritize electrification of two/three wheelers due to cost competitiveness
 - Tighten fuel economy and emission standards
- Secure and sustainable EV supply chains
 - Leverage private investment to sustainably mine battery metals
 - Innovation of alternative chemistries and tracking of key EV components

Geographical distribution of the global EV battery supply chain

Thank you!

